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Outline

• Overview of issues for the current Internet: neutrality, access and transit pricing

• The ICN case - reversing side-payment polarity (ISP to CP)

• A simple game model with one access and one content-provider player

• Competition - multiple players of each type

• Convex demand response to price

• Two-player game with ISP caching

• Discussion: advertising, security, DRM

2



Simple games modeling Internet economics

• There are enormous financial stakes in the Internet’s on-going network neutrality debate.

• Economic forces are important when considering architectural evolution of the Internet.

• In the following, we will employ simple game-theoretic models to concretely illustrate some
of the current and future Internet’s economic issues.

• ISPs (access or transit/backbone providers), application-service/content providers (CPs),
name resolvers/rendezvous entities, advertisers, etc., can be taken to be players on a plat-
form of end-user demand.

• On a platform of end-user demand, the following games will be variations of the classical
Bertrand price-competition model:

– studied at their Bertrand-Nash equilibrium,

– also considering bandwidth constraints (as in classical Cournot “quantity” competi-
tions).
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Economic Internet games (cont)

• For simplicity, we will herein consider

– only two-sided models, i.e., at most two types of players (ISP and CP), or

– two like players (each both an ISP and CP).

• In particular, we will not make simple extensions to consider side-payments to separate
content resolvers of proposed future information-centric networking (ICN) architectures.

• If resolvers are assumed to be part of some of the ISP and/or CP players of some fu-
ture Internet game model, Shapley values could be used to determine resolver component
revenues.

• Note that other researchers have considered variations, e.g., end-users and CPs playing on
an ISP platform (e.g., Musacchio et al. ’09), and three-sided models of end-users, CPs and
ISPs (e.g., Hande et al. ’09).

4



Internet end-user access pricing

• Originally, asymmetrically bandwidth-limited flat-rate subscription tiers, no overages.

• Today also coarse volume-based subscription tiers (i.e., volume overages), especially for
cellular wireless access.

• In the following we will assume service-class (or by application type) based pricing, with

– a flat-rate best-effort basic service, and

– usage priced premium service, where

– our focus will be on the latter.

• Premium service could require reservation fees for a quantity.

• Time-of-day variations in usage-based prices to deter use during peak loads and incent use
during off-peak hours.

• See recent survey Sen et al. ’12 comparing such mechanisms.
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Application neutrality of current Internet

• Network neutrality requires providing network access without unfair discrimination among
applications, content, nor the specific source of traffic.

• In the context of the service agreement with the end-user and their ISP, what constitutes
(unfair) discrimination?

• If there are two applications that “require the same network resources” and one is offered
better quality of service (shorter delays, higher transmission capacity, etc.) then there is
discrimination.

• When is a discrimination fair? A preferential treatment of traffic is considered fair as long
as the preference is left to the user.
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Network Neutrality and side-payments of current Internet

• NN “usually means that broadband service providers charge consumers only once for Internet
access, do not favor one content provider over another, and do not charge content providers
for sending information over broadband lines to end users.” (Hahn & Wallsten ’06)

• Here, “charging once” disavows side payments between remote CPs and the ISPs of end-
users.

• In the past, peering between ISPs often did not involve costs associated with asymmetric
traffic volumes at the peering point(s); but today, side-payments between ISPs and CPs
may manifest indirectly through peering SLAs between a CP’s ISP and a residential ISP
that is remote to the CP.

• Such SLAs target traffic asymmetries wherein the ISP receiving the net packet-flow load
applies a charge to the net-sending ISP based on

– average (or “sustainable”) packet rate (equivalently a quota over a fixed time period),
possibly tiered to allow for graduated bulk discounting, and

– a type of peak-rate penalty, e.g., an additional charge per packet-volume over a short
time-interval that is above a threshold (peak overages), or based on a “percentile peak”
measure.

• In the following, we will model content-caching of two eyeball ISPs using a simple fixed-rate
per unit volume (single pricing tier) of net packet-flow.
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Network neutrality and side-payments (cont)

Asymmetry in peering may mean more $ for ISP1b, so its best interest may be not to cache
content.
However, the lack of local content caching may result in poor responsiveness from the end-user’s
perspective, hence lower end-user demand (and possible loss of end-user customers).
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Simple two-player game with ISP and CP

• Consider a model with three actors:

– the Internauts (end-users) collectively,

– a network access provider for the Internauts, called ISP1, and

– a content provider and its ISP, collectively called CP2.

• Users pay pi ≥ 0 per unit consumption to provider i ∈ {1,2}.
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Common, linear demand response to price

• Users are modeled through a common (to both ISP1 and CP2), linear demand function:

D = Dmax − pd,
where

p = p1 + p2, p1, p2, D ≥ 0,

Dmax is the maximal demand, and
d > 0 is the demand sensitivity to price.

• So, provider i’s revenues are

Ui = piD, i = 1,2.

• Subsequently, we will consider demand functions that are nonlinear in price.

• Different demand sensitivities d for access and price, though not considered in this talk, are
motivated by, e.g., a scenario where

– the CP charges the same for two instances of content which

– are of very different sizes, so they are different from the ISP’s point-of-view.
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ISP and CP game on a platform of end-user demand-response
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Cooperative pricing

• Suppose the objective of both ISP1 and CP2 is to maximize U1 + U2, i.e., solve

∂(U1 + U2)

∂pi
= Dmax − 2pd = 0, i = 1,2.

• So, the total price p = p1 + p2 = Dmax/(2d), maximizes U1 + U2 to give

(U1 + U2)max = D2
max/(4d).

• Shapley values, measures of appropriate division of communal revenue, have been used to
advocate for such side payments in past work (Ma et al. ’08).

• Here, they evenly divide total revenue among CP and ISP, i.e.,

U∗i = D2
max/(8d), for i ∈ {1,2}.
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Competitive pricing

• In a noncooperative game, each player has their own objective (net utility) depending on
their own and other players’ play actions.

• A Nash equilibrium point (NEP) is a kind of multi-objective stalemate at which any unilateral
action by any player, assuming the plays of the others are fixed, results in lower net utility
for that player.

• In this talk, we do not focus the iterative play-action dynamics arriving at a NEP.

• If the providers do not cooperate then the utility of provider i is obtained by computing the
interior NEP.

• Owing to utility concavity, this is equivalent to solving the first-order conditions

∂Ui

∂pi
= D − pid = 0, i ∈ {1,2}.

• This gives NEP p∗1 = p∗2 = Dmax/(3d) at which the utilities for each provider i ∈ {1,2},

U∗i =
D2

max

9d
<

D2
max

8d
,

i.e., less than the optimal utilities under cooperative pricing.
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Competitive pricing with side payments

• Next consider the competitive model with side payments per unit demand, ps.

• Assume CP2 is requested to pay ps to ISP1 per unit of “transit” flow (recall assumption of
common demand response).

• The revenues of the providers are now:

U1 = [Dmax − d (p1 + p2)] (p1 + ps)
U2 = [Dmax − d(p1 + p2)] (p2 − ps)

• Note that negative side-payment (ps < 0) would simply mean net payment to CP2 from
ISP1.
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Fixed/regulated side payment

• Since the CP and ISP utilities are linear in ps, if either player optimizes over ps, then it will
set ps at an extreme value, i.e., 0 or

pmax := Dmax/d.

• So it’s possible that a regulator will limit the control of any one player over the side payment
amount, particularly in the absence of competition among like providers.

• Note that the first-order condition for equilibrium, ∂Ui/∂ps = 0 corresponds to zero
demand, for either player i ∈ {1,2}.

• So, in the following we will typically assume that ps is not a decision (play) variable of the
game, rather a fixed parameter.

• We will consider equilibrium performance for different cases of side payment.
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Fixed side payment - interior NEP for |ps| ≤ pmax/3

• When |ps| < pmax/3, jointly maximizing utilities Ui over pi leads to the interior NEP:

p∗1 = −ps + pmax/3 and p∗2 = ps + pmax/3.

• So, the equilibrium utilities are

U∗i = D2
max/(9d), i ∈ {1,2}.

• Thus, the side-payment does not affect revenues.
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Fixed side payment - boundary NEP with ps > pmax/3

• Recall ps > 0 if net side payment from CP2 to ISP1.

• When ps ≥ pmax/3, there is a boundary NEP at

p∗1 = 0 and p∗2 = (ps + pmax)/2,

i.e., the ISP has no direct usage-priced revenue (only flat-rate monthly access fees for
best-effort service).

• So, the Nash equilibrium utilities are

U∗1 = (Dmax − dps)ps/2 and U∗2 = (Dmax − dps)2/(4d).

• Note that ps ≥ pmax/3 ⇔ U∗1 ≥ U∗2.

• Also, if pmax/3 < ps ≤ 2pmax/3, then U∗1 > D2
max/(9d), i.e., increasing ps to this

range results in improved revenue for ISP1 compared to that when ps ∈ [0, pmax/3).

• However, if ps > 2pmax/3, then U∗1 < D2
max/(9d), i.e., increasing the side payment to

this range results in less revenue for the ISP1.

• Of course, at ps = pmax, D = 0 ⇒ U1 = 0 = U2.
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Excess side-payments may lead to less revenue for all

• Generally, a player (CP2) making a large (net) side payment will try to recover those costs
by increasing prices to the consumers, in turn that will cause consumer demand to fall,
thereby tending to reduce revenue to the player receiving the side payment (ISP1).

• So, excess side payments (as ps → pmax), will cause demand D → 0 as the side-payment
payer i increases their price pi so that pi > pk (i.e., its revenue Ui > 0).
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Present Internet vs ICN: side-payment polarity

• In the present-day Internet, consumers request content/services from specific content providers,

– i.e., those user-requested CPs push content to the ISP,

– so it may be reasonable to expect that if a side-payment is in play it will tend to be
from CP to ISP; also, the CP could pay the ISP to cache its content (e.g., Agyopong
& Sirbu ’11).

– Again note that a direct side-payment would be equivalent to an indirect provision in a
SLA between CP2’s ISP and the residential-serving, last-mile ISP1, favoring ISP1 due
to aggregate traffic load asymmetry at the peering points.

• In a future information-centric network where the consumers make an anycast request for
content to the ISP:

– the ISP selects a CP and pulls the content in,

– and so it may be reasonable to expect that the ISP may need to pay the CP for its
content (royalties) and networking costs,

– i.e., ps < 0 (Trossen & Kostopoulos ’12).
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Fixed side payment - boundary NEP with ps < −pmax/3 (ICN)

• Recall how the interior NEP covered the case where ps ∈ [−pmax/3,0], i.e., ps < 0 as
in the ICN scenario.

• As for the complementary Internet case, when ps < −pmax/3, the boundary NEP is

p∗2 = 0 and p∗1 = −ps + pmax/2.

• Note that ps ∈ [−pmax/3,0] ⇔ U∗2 ≥ U∗1 (the Nash equilibrium utilities).

• Also note that for ps ∈ [−2pmax/3,−pmax/3), U∗2 > D2
max/(9d), i.e., decreasing

(increasing the magnitude of) the side payment to this range results in improved revenue
for CP2 compared to that when ps ∈ [−pmax/3,0].

• However, if ps < −2pmax/3, then U∗2 < D2
max/(9d), i.e., increasing the side payment

to this range results in less revenue for CP2.
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Stackelberg equilibrium

• Stackelberg games involve a leader leader player and one or more follower players.

• Play actions are no longer taken simultaneously: first the leader takes an action, and then
the followers react to this action.

• Assume that the ISP1 is the leader and has set p1 and ps.

• Now CP2 is given p1 and ps, and is to set p2 to maximize concave

U2 = (Dmax − d(p1 + p2))(p2 − ps).

• So, the first-order conditions are necessary and sufficient to maximize U2 over p2 ≥ 0,

∂U2

∂p2
= Dmax − d(p1 + p2)− d(p2 − ps) = 0.

• Thus to maximize U2 at an interior point, CP2 will take p2 as

p∗2 =
1

2

(Dmax

d
+ ps − p1

)
.
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Boundary Stackelberg equilibrium for the ICN case

• Substituting p∗2 in U1, we obtain:

U1 = (Dmax − d(p1 + p2)) (p1 + ps)

=
1

2
(Dmax − 3p1d− psd) (p1 + ps)

• Now ISP1 will reselect p1 and ps to maximize U1 which is concave in (p1, ps).

• The first-order conditions (FOCs) for an interior NEP are:

∂U1

∂p1
=

Dmax − 4dps − 6dp1

2
= 0

∂U1

∂ps
=

Dmax − 2dps − 4dp1

2
= 0

• Subtracting these FOCs gives

−p∗s = p∗1 =
Dmax

2d
> 0,

i.e., p∗s < 0 (the ICN case).
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Boundary Stackelberg equilibrium for the ICN case (cont)

• But this implies p∗2 = 0, i.e., the boundary NEP is

(p∗1, p
∗
2, p
∗
s) = (

Dmax

2d
,0,−

Dmax

2d
).

• Note that in this case, the CP has zero revenue directly from end-users.
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Boundary Stackelberg equilibrium for the Internet case

• Now assume that

p1 = 0.

• If ps > 0 (the Internet case), then the above FOC ∂U1/∂ps = 0, gives that U1 is
maximized at

ps =
Dmax

2d
,

which is consistent with the assumption that ps > 0.

• Substituting back into the optimal CP2 price, we get

p2 =
3Dmax

4d
> 0.

• So, the above three displays give a boundary Stackelberg equilibrium for the Internet case,

(p∗1, p
∗
2, p
∗
s) = (0,

3Dmax

4d
,
Dmax

2d
).
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Multiple providers of each type

• Again, Internauts (end users, consumers) are modeled collectively by their demand response.

• Now suppose n1 ≥ 1 last-mile ISPs, and n2 ≥ 1 CPs.

• Consumers pay one ISP and one CP usage-dependent fees for access and content.

• Providers then compete in a game to settle on their usage-based prices, which may turn
out to be 0$/byte, i.e., only flat-rate subscription fees would apply.

• Let p1i ≥ 0 (resp. p2j ≥ 0) the usage-based price of the ith ISP (resp. jth CP).

• Common user demand response is assumed linear

D(p1i, p2j) = Dmax − d1p1i − d2p2j,

where dk is the demand sensitivity to price paid to provider of type k (here possibly provider
dependent where, again, subscript k = 1 for ISP, 2 for CP).

• Assuming a common demand response for different types of providers, consistent with
assuming d1 = d2 = d.
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Customer stickiness

• As we suppose all providers of a given type propose the same type/quality of content/service,
user decisions are only based on price considerations.

• If an ISP charges a price significantly lower than the other ISPs, eventually all customers
will choose it and the other ISPs will have no choice but to align their prices or opt out of
the game.

• Therefore, our homogeneity hypothesis means all n1 ISPs (and similarly all n2 CPs) have
roughly the same prices: pki ≈ pkj ∀k, i, j.

• As providers play the usage-based pricing game, first-order differences between these prices
may appear (e.g., the ith ISP reducing his price by δp1i to attract new end users).

• Consumers are then more likely to go to the cheapest providers of each type, but price
differences may be too small to convince all of them to move and some will stay with their
current provider.

• Rather than modeling customers as separate players, simply let σki ≡ σ(i,pk) be the
fraction of users with provider i of type k (charging pki).
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Customer Stickiness: Properties

(a) σ(i,pk) ≥ 0 and
∑nk

j=1 σ(j,pk) = 1;

(b) if pk = (p, p, . . . , p), then ∀i ∈ {1, ..., nk},
σ(i,pk) = 1/nk; and

(c) pki < pkj ⇒ σ(i,pk) > σ(j,pk).

• So, uniform distr’n if all providers of a given type charge exactly the same price, otherwise
that cheaper providers attract more consumers.

• We chose

σ(i,pk) =
1/pki∑nk
j=1 1/pkj

=: σki

• The average usage-based price charged by a type-k provider to a customer is pk :=∑
i σkipki, i.e., the harmonic mean of {pki}i.

27



Without side payments

• With no side payments nor application discrimination, the ith ISP’s expected usage-based
revenue is the quadratic form:

U1i =
n2∑
j=1

σ1i σ2jD(p1i, p2j) p1i

= σ1iD(p1i, p2) p1i,

and similarly U2j for the jth CP.

• Necessary conditions for an interior Nash Equilibrium Point (NEP) are

∂Uki

∂pki
(p1, p2) = 0 for k = 1,2,

i.e., a local maximum in revenue for all players.
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Without side payments (cont)

• Solving, we get that at the NEP

D∗ =
n1n2

n1n2 + n1 + n2
Dmax,

U∗ki =
n2

3−k
(n1n2 + n1 + n2)2

Umax for k = 1,2.

• As expected, customers benefit from competition among the providers.

• With 2 ISPs and 2 CPs, demand is only 50% of its potential Dmax, while it is about 70%
of Dmax with 5 ISPs and 5 CPs.

• Competition in a provider’s own group has much greater impact on their income than
competition in another group.
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With side payments

• Usage-based fee ps referenced from the CPs to the ISPs.

• Again, when ps > 0 (Internet case), CPs remunerate the ISPs, e.g., to support the band-
width costs or share in advertising revenue (e.g., Ma et al. ’08).

• On the other hand, if ps < 0 (ICN case), ISPs give money to the CPs, e.g., to supplement
copyright-related royalties and for CPs’ operating/networking costs.

• With all demand and price factors are non-negative,

U1i = σ1iD(p1i, p2)(p1i + ps), i ∈ {1, ..., n1},
U2j = σ2jD(p1, p2j)(p2j − ps), j ∈ {1, ..., n2},

• Again, expect ps will not be any player’s decision variable.

• Since revenues are monotonic in ps, those controlling it would always be incentivized to
increase or decrease it (if they are ISPs or CPs respectively), leading the other players to
opt out of usage-pricing - thus, again assume ps is regulated (fixed).
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Side payments (cont)

Theorem 1 When n1 = n2 = 2, there is an interior NEP if and only if∣∣∣∣ pspmax

∣∣∣∣ ≤ max
x∈[1

4
,1

2
]

√
(1− x)(1− 2x)2(4x− 1)

36x
≈ 4.64%,

where pmax := Dmax

d
≥ p1i + p2j.

• For proof see Caron et al. arxiv.org tech report (v.1 Aug. 2010).

• So, regulated side payments can only occur to a small extent (|ps| < 4.64% of pmax),

• otherwise there will be no interior NEP, which means one of the two groups of players will
opt out of the usage-based pricing game.

• There are two solutions to the NEP necessary conditions, NEP1 and NEP2.

• Generally, additional NEPs may exist on the boundary of the play-action space.
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Demand and revenues at interior NEPs (s = ps)

Demand (D): Revenues (U):
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NEP1 at left and NEP2 at right.
x-axes: s := ps/pmax.
y-axes: % of maximal values.
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A paradox of NEP demand and revenues

• NEP1 is consistent with the results of the non-discriminating setting (when ps = 0, p∗k =
pmax/4, D∗ = Dmax/2 and U i∗

k = Umax/16 for k = 1,2),

• while NEP2 does not exist when ps = 0 (there is a discontinuity in equilibrium prices at
this point).

• Both interior NEPs share the same “paradox”: providers receiving side payments eventually
achieve less revenue than the others.

• Now assume ps > 0 (Internet case), otherwise the roles of ISPs and CPs are swapped.

• Assume all providers act independently under a best-response behavior.

• Thus, the (“better response”) vector field

(p1, p2) 7→
(
∂U1i

∂p1i
(p1, p2),

∂U2j

∂p2j
(p1, p2)

)
is an appropriate indicator of the aggregate “trends” of the system.
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Convergence to equilibrium

“Macroscopic” trends of the system for n1 = n2 = 2 and ps = 4% of pmax.

• If p1 > p∗1(NEP2), the system → NEP1;

• otherwise, unless p1 is precisely equal to p∗1(NEP2), the system → NEPB (where usage-
based revenues for ISPs come only from side payments);

• NEP2 is an unstable (saddle) point.
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Convergence to equilibrium

• Solving NEP necessary conditions with p1 = 0 yields

p∗2(NEPB) =
pmax

6

(
1 + s+

√
s2 + 14s+ 1

)
,

with corresponding expressions for demand and revenues following directly.

• Demand higher at boundary NEPB than at interior NEPs,

• while ISP revenues turn out to be lower (and CP revenues higher) than at NEP2.
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Application neutrality

• Consider two crude example types of applications, each provided by different CPs indexed
2 and 3.

• Users choose an ISP, a type-2 CP and a type-3 CP; again no coalitions.

• In a neutral setting, the ith ISP charges a single price p1i for all types of traffic;

• otherwise it may set up two different prices p12,i and p13,i for type 2 and type 3 traffic
respectively.

• Denote by p2j (resp. p3j) the usage-based price charged by the jth CP2 (resp. CP3).

• When ISP i, CP2 j and CP3 l are chosen, demands for type-2 and type-3 content are,
respectively,

D2 = D2max − d2(p12,i + p2j),
D3 = D3max − d3(p13,i + p3l),

with p12,i = p13,i = p1i in the neutral setting.

• As previously, define pkmax := Dkmax/dk.
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Application neutrality (cont)

• Revenues are based on these demand profiles and the consumer stickiness model described
before.

• For the normalized sensitivity to usage-based pricing and the maximum prices ratio, resp.
α := d2

d2+d3
and γ := p2max/p3max, assume:

– α ≥ 1/2⇔ d2 > d3: consumers are more sensitive to usage-based pricing for type-2
content than for type-3 content.

– γ < 1 ⇔ p2max < p3max: customers are ready to pay more for type-3 content than
for type-2 content.
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Not application-neutral setting

• The NEP for the application neutral setting is straightforward from the necessary conditions.

• For non-neutral pricing, the ith ISPs utility is U1i = σ1i(D2p12,i +D3p13,i), where σ1i

refers to the portion of users gathered by ISP i given his prices p12,i and p13,i.

• There are different ways to generalize the model of consumer stickiness to multiple criteria.

• We chose σ1i := σ(i, p̃1) = 1/p̃1i/
∑n1

j=1 1/p̃1j

with p̃1i :=
√
αγ p12,i + (1−√αγ) p13,i because

– σ1i still satisfies the basic properties expected for a stickiness function given before,

– the weight of p12,i in the combination is increasing in p2max and d2,

– similarly the weight of p13,i is increasing in p3max and d3; and

– the resulting model is solvable in closed form.

• Computations yield a single admissible NEP here.
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Numerical results for application neutrality

• In our numerical Sage experiments, we compared revenues at this NEP with those of the
neutral scenario for α = 0.8 and γ = 0.3.

• The main result we observed is that ISPs and type-2 CPs prefer the non-neutral setting,
while type-3 CPs benefit from neutrality regulations.

• The impact of non-neutral pricing on providers’ revenues varies with competition: increased
competition brings less benefit for type-2 CPs and less loss for type-3 CPs.

• Yet, competition among CPs has almost no effect on ISP gains.
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Numerical results for application neutrality

Relative variation in revenue,
i.e., the ratio of revenues (non-neutral - neutral)/neutral at the NEP,

where n is the number of providers of each type.
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ISP caching for ICN and convex demand-response

• In the following, we will address the issue of ISP caching in ICN.

• Note that ISP caching is simply not incented for this Internet ISP-CP model.

• We’ll also reconsider our demand response model which is linear in price.

• For delay sensitive applications that are likely to pay for usage-priced premium service
(instead of best-effort service covered by the flat-rate monthly access fee), we will argue
that demand response is convex in price.
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Limited bandwidth B between ISP and CP
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Price-convex demand-response: Delay sensitivity

• Suppose the applications associated with usage-based charges are delay sensitive.

• Suppose “implicitly” model their demand

D = [g(D)]+

with

g(D) = (Dmax − dp)

(
1−

λ

B −D

)
/

(
1−

λ

B

)
,

where

– B is the bandwidth reserved between CP and ISP for delay-sensitive applications under
usage-based total price p to consumers,

– λ is demand sensitivity to mean delay, here modeled as 1/(B−D) (an expression for
mean delay taken from the M/M/1 queue).
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Price-convex demand-response: Delay sensitivity (cont)

• Let

D̃ := (Dmax − dp)/(1− λ/B) = Dmax(1− p/pmax)/(1− λ/B),

and assume D̃ > 0.

• The interior fixed-pointD of g+ (i.e., fixed point of g), gives the “explicit” demand response

D = 1
2

[
(B + D̃)−

√
(B − D̃)2 + 4λD̃

]
.

• This demand-response model has the following properties

– D → Dmax as B →∞ and p→ 0.

– If B > λ then D is a convex function of D̃ and hence also a convex function of price
p.
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Simplified price-convex demand-response, D(·)

• Suppose that U1 = (p1 + ps)D(p1 + p2) and U2 = (p1 − ps)D(p1 + p2).

• By adding the first-order conditions ∂Ui/∂pi = 0, i ∈ {1,2}, we get that the interior
Nash equilibrium for a strictly price-convex demand response D is

p∗1 = p∗/2− ps and p∗2 = p∗/2 + ps,

when |ps| < p∗/2, where p∗ = p∗1 + p∗2 solves

2D(p∗) + p∗D′(p∗) = 0.

• For the simple example

D(p) = Dmax(1− p/pmax)a with a > 1,

the Nash equilibrium prices and utilities are given by

p∗ =
2

2 + a
pmax,

U∗1, U
∗
2 =

p

2
D(p) =

Dmaxpmax

2 + a

(
a

2 + a

)a
,

where Dmax is decreasing in B.

• Again, under communal demand response with only one provider of each type, neither p∗

nor U1, U2 depend on ps when |ps| < p∗/2.
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ISP caching in ICN
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Implicit demand-response formulation with caching

• As a result of ISP caching, only a fraction (1−κ) of the demand D is transmitted through
the the bandwidth B between ISP and CP.

• So, D = [gκ(D)]+, where

gκ(D) = (Dmax − dp)

(
1−

λ

B − (1− κ)D

)
/

(
1−

λ

B

)
= (Dmax − dp)

(
1−

λ/(1− κ)

B/(1− κ)−D

)
/

(
1−

λ/(1− κ)

B/(1− κ)

)
• So, solving D = gκ(D) results in the previous demand-response with B and λ replaced

by B/(1− κ) and λ/(1− κ), respectively:

D = 1
2

 B

1− κ
+ D̃ −

√(
B

1− κ
− D̃

)2

+ 4
λ

1− κ
D̃

 .
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Demand-response increasing in caching factor

• Since, gκ(D) = g0((1 − κ)D) := g((1 − κ)D), is decreasing in (1 − κ)D (hence
increasing in caching factor κ), the solution

Dκ = gκ(Dκ)

is an increasing function of caching factor κ (in particular) Dκ ≥ D0).

• To see this, note that

D0 = g0(D0) < g0((1− κ)D0) = gκ(D0).

• So, if Dκ ≤ D0, then we would have

Dκ ≤ D0 < gκ(D0) ≤ gκ(Dκ),

which contradicts the definition of Dκ in the first display above.

• Also note that, as κ→ 0, the demand tends to the previous demand response, i.e., convex
in price.

• On the other hand, as κ→ 1, the demand response tends to linear in price.
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Simplified demand-response convex in price with caching

• We have motivated the following generalization of the simple demand response model,

D(p) = Dmax(B)(1− p/pmax)κ+a(1−κ) with a > 1

= Dmax(B)(1− p/pmax)a−κ(a−1)

where as a result of the previous discussion,

– Dmax(B) is decreasing in B (effect of two types of users),

– pmax := pmax,b, i.e., that of the less price-sensitive type of user.

• Note that D is increasing in κ and tends to price-linear as κ→ 1.

• So, we can employ the previous result to get that the interior NEP here is:

p∗1 = p∗/2− ps
p∗2 = p∗/2 + ps

p∗ =
2

2 + κ+ a(1− κ)
pmax

• ISP1’s net revenue (utility) with cost of caching is

U1 = (p1 + ps)D(p1 + p2)− c(κ).
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Caching cost convex in caching factor

• Assume that the cost of caching is proportional to the number of cached items (content),
in turn proportional to the (mean) amount of memory required to store them.

• For a fixed population of N end-users (a proximal group served by an ISP), let π(j) be
the proportion of the items that will soon be of interest to precisely j end-users.

• Finally, suppose the ISP effectively prioritizes its cache to hold the most popular content.

• So, a caching factor κ, based on all-or-none decisions to cache content of the same popu-
larity, would satisfy

κ ∝
N∑

j=N−f(κ)

jπ(j).

for some f(κ) ∈ {0,1,2, ..., N}.

• The cost of caching would be proportional to the number of cached items, i.e.,

c(κ) ∝
N∑

j=N−f(κ)

π(j).

• Suppose that the great majority of potentially desired content is only minimally popular,
i.e., π(j) is decreasing.
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Caching cost convex in caching factor (cont)

• We now argue that the caching cost c(κ) is convex and increasing for the simplified con-
tinuous scenario ignoring the (positive) constants of proportionality:

κ =

∫ N

N−f(κ)
zπ(z)dz and c(κ) =

∫ N

N−f(κ)
π(z)dz,

with c(0) = 0 and c(1) = 1.

• By differentiating successively, we get

1 = (N − f(κ))π(N − f(κ))f ′(κ)
c′(κ) = π(N − f(κ))f ′(κ)
⇒ 1 = (N − f(κ))c′(κ)

⇒ c′′(κ) = f ′(κ)(N − f(κ))−2

• Note that f ′ > 0 by first equ. above, and therefore c′′ > 0 by last equ.
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ISP caching with price-convex demand response: Expt’l results

ISP utility U∗1/(Dmaxpmax) with: a = 2 and no cache cost, c = 0. Note how U∗1 increases
with caching factor κ.
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ISP caching with price-convex demand response: Expt’l results (cont)

ISP utility U∗1/(Dmaxpmax) with: a = 2, quadratic (convex) cache cost, c(κ) = bDmaxpmaxκ2

with b = 0.05. Note optimal choice here is fractional κ ≈ 0.4.
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Caching remote content by two eyeball ISPs
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Two Eyeball ISPs: Background

• Revenue of an eyeball-ISP: pD

• Recall convex, piecewise-linear demand response

– parameters: Dθ < Dmax and dmax > dθ

– D(p) = max{Dmax − dmaxp, D̂θ − dθp} where

D̂θ =Dθ + (Dmax −Dθ)dθ/dmax,

pθ =(Dmax −Dθ)/dmax,

pmax =D̂θ/dθ = pθ +Dθ/dθ

• Convex, differentiable demand model: D(p) = Dmax(1− p/pmax)α
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Three different congestion points per ISP, fixed caching factors

• Utilities:

Ua(pa, pb) =Da(pa)pa + ΦaDb(pa)pa

+ [(1−Φa)Db(pa)− (1−Φb)Da(pb)]+pt,

Ub(pa, pb) =Db(pb)pb + ΦbDa(pb)pb

+ [(1−Φb)Da(pb)− (1−Φa)Db(pa)]+pt

• Dk(p) = Dmax,k

(
1− p

pmax

)α
, where pmax > 0 and α ≥ 1 (recall price-convex demand

at congestion points)

• Assume the demand ratio δ := Dmax,b

Dmax,a
≤ 1

• Nash equilibrium (p∗a, p
∗
b):

arg max
pa

Ua(pa, p
∗
b) =p∗a and

arg max
pb

Ub(p
∗
a, pb) =p∗b.
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Three different congestion points per ISP, fixed caching factors -
Nash equilibrium for a special case

• Case condition:

(1−Φa)Db(p
∗
a) > (1−Φb)Da(p

∗
b) equivalently,

1 <
(1−Φa)δ

1−Φb

(
1 +

(1−Φa)δpt
(1 + Φaδ)pmax

)α
.

• Solution:

p∗a =
pmax

1 + α
−

pt(1−Φa)δα

(1 + α)(1 + Φaδ)
,

p∗b =
pmax

1 + α

with the condition

pmax

pt
> 1 +

α(δ + 1)

1 + δΦb

on pt implied by pt < p∗a < p∗b < pmax.

• Note that p∗a is increasing in Φa and how the case condition depends on Φb.
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Discussion: ISP caching

• The other cases for the model involving three points of congestion are similarly, easily
derived.

• In Kocak et al. ’13, we also considered:

– a single-point of congestion model, and

– competition among ISPs for the same group of end-users.

• One can conclude from the form of the NEPs and numerical experiments how eyeball ISPs
with more popular content and less competition (larger Dmax) can charge higher prices
and garner more revenue, i.e., demand is less price sensitive at NEP (obviously, an intuitive
result for this case).

• Hopefully, such simple revenue models can be used to assess and compare more complex
data caching (or name resolver) spatial deployment strategies trading off bandwidth and
caching costs.
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Discussion: Advertising revenue

• Some authors have also considered advertising revenue for the content provider, e.g., here
simply by adding a term paD to the utility U2 of the CP.

• In ICNs will advertising revenue be shared, or even be ISP-centric?
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Discussion: Usage-priced service - security issues

• Again, envision a flat rate monthly fee for best effort service, fee depends on max asymmetric
download/upload bandwidth.

• End-users need to securely authorize, e.g., by CAPTCHA, if usage-priced premium CoS on
an app-by-app basis.

• Such authorization could be chained in the network to allow status as (authenticated)
premium-access applications to be known by CPs.

• Respond to a DDoS attack on a public-domain server by upstream blocking only all best-
effort (not thus authorized) packets.
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Discussion: Digital Rights Management (DRM) of CPs

• Copyright holders of content need to be able to securely collect royalties.

• Under the current neutral Internet, ISPs are arguably not liable for copyright violations.

• How will DRM be different in an ICN?
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Concluding remarks

• We considered game theoretic models for simple, generic networking scenarios.

• The performance results in terms of usage-based revenues at Nash equilibrium can be used
to compare the economic consequences of the network actors in ICN versus IP.
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